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A B S T R A C T

Corona-virus disease 2019 (COVID-19) is an infectious disease that has affected different groups of humankind
such as farmers, soldiers, drivers, educators, students, healthcare workers and many others. The transmission
rate of the disease varies from one group to another depending on the contact rate. Healthcare workers are
at a high risk of contracting the disease due to the high contact rate with patients. So far, there exists no
mathematical model which combines both public control measures (as a parameter) and healthcare workers
(as an independent compartment). Combining these two in a given mathematical model is very important
because healthcare workers are protected through effective use of personal protective equipment, and control
measures help to minimize the spread of COVID-19 in the community. This paper presents a mathematical
model named SWE 𝐼𝑠𝐼𝑎HR; susceptible individuals (S), healthcare workers (W), exposed (E), symptomatic
infectious (𝐼𝑠), asymptomatic infectious (𝐼𝑎), hospitalized (H), recovered (R). The value of basic reproduction
number 𝑅0 for all parameters in this study is 2.8540. In the absence of personal protective equipment 𝜉 and
control measure in the public 𝜃, the value of 𝑅0 ≈ 4.6047 which implies the presence of the disease. When 𝜃
and 𝜉 were introduced in the model, basic reproduction number is reduced to 0.4606, indicating the absence
of disease in the community. Numerical solutions are simulated by using Runge–Kutta fourth-order method.
Sensitivity analysis is performed to presents the most significant parameter. Furthermore, identifiability of
model parameters is done using the least square method. The results indicated that protection of healthcare
workers can be achieved through effective use of personal protective equipment by healthcare workers and
minimization of transmission of COVID-19 in the general public by the implementation of control measures.
Generally, this paper emphasizes the importance of using protective measures.
Introduction

Corona-virus disease 2019 (COVID-19) is an infectious disease that
emerged in December 2019 in China caused by a new strain of virus
called severe acute respiratory syndrome coronavirus 2 (SARS COV-
2) [1–4]. The first case of coronavirus disease originates from the
Huanan seafood wholesale market where the live animals are be-
ing sold [5]. Coronavirus is classified among the family of coron-
aviridae, the order of Nidovirale, and the subfamily of Coronaviri-
nae [6]. Alpha-coronavirus, Beta-coronavirus, Delta-coronavirus and
Gamma-coronavirus are the four types of coronaviruses that belong
to the subfamily orthocoronavirinae [6,7]. Few research findings pre-
sented that origin of alpha and beta-coronavirus is from bats and
rodents while avian species are the generative sources of gamma and
delta-coronavirus [8].

∗ Corresponding author.
E-mail address: masandawal@nm-aist.ac.tz (L. Masandawa).

COVID-19 can be spread from one individual to another through
inhaling respiratory droplets released from the nose or mouth of an
infectious individual when talking, sneezing, or coughing [9]. Also,
an individual can acquire this virus through fomite transmission [10].
Older people aged 65 and above are more likely to be hospitalized
or die from this disease. There is also a high severity of the disease
to the group of people with underlying medical conditions such as
hypertension, diabetes, cardiovascular, chronic respiratory disease and
cancer [9]. Common clinical symptoms of the disease include tired-
ness, dry cough and fever [11] while serious symptoms include blood
pressure, loss of movement or speech, chest pain and difficulty in
breathing.

The basic reproduction number 𝑅0 is the term used in mathematics
to indicates how contagious an infectious disease is. It also known
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as the estimated number of cases. 𝑅0 indicates how many people on
verage one infected individual can infect in the entire period. If 𝑅0 > 1

the disease will persist in the community and when 𝑅0 < 1 the disease
ill die away. The value of 𝑅0 for COVID-19 varies from one region to
nother for instance, one study conducted for all European countries
evealed that the value of 𝑅0 was in a range of 4.22 ± 1.69 with a
aximum values of 6.33 and 5.88 in Germany and the Netherlands

espectively [12]. Another study of corona-virus indicated that 𝑅0
anges 2.2–4.7 [13]. Also, one study of corona-virus disease 2019
onducted in 15 Western European countries showed that the value of
0 is 2.2 [14] while another study of corona-virus conducted in Africa

evealed that the value of 𝑅0 is 2.37 [15].
On July 12th, 2021, COVID-19 spread to about 223 countries world-

ide in which more than 188 million cases were reported with a
otal of 4.065 million death globally. Many research groups in dif-
erent nations in the world have put much effort into developing or
roducing vaccines [16]. Although some vaccines have been devel-
ped, nonpharmaceutical interventions are important in minimizing
he outbreak.

Modeling is an essential theoretical tool that helps in understanding,
nd analysis of effective control and preventive measures of different
ommunicable diseases [16]. Many models of epidemiology divide their
opulation into compartments in which assumptions are made about
he nature and time rate of transfer among the human population [17].
hese models act as a mathematical framework for studying the com-
lexity of the dynamics of epidemiological processes [9]. A mathemati-
al model is a major tool used to present COVID-19 transmission and its
imulation can be used for predictions [16]. Some mathematical models
ere constructed to analyze the spreads of viruses [18]. During the
utbreak of COVID-19, modeling attracted a special attention to many
harmacists, mathematician, chemists, biologists, epidemiologists [1,
,19–27]. This can be an effective approach to study, simulate and
redict the mechanism and transmission of the disease.

COVID-19 has affected different groups of people such as farmers,
oldiers, public drivers, educators, students, healthcare workers and
any other groups. The transmission rate of this disease differs from

ne group to another depending on contact rate. Healthcare workers
hich is the most important health workforce are at a high risk of

ontracting the disease due to the high contact rate with patients [28].
navailability of diagnostic tests and an insufficient number of pro-

ective equipment put the healthcare workers at the highest risk of
ecoming infected and infecting others. There are some models focused
n the risk of COVID-19 on healthcare workers [28,29] and others dealt
ith the spread of COVID-19 between the public and frontlines taking

nto consideration two mutually exclusive population (i.e the public
ompartment alone and frontlines alone) for instance Buhat et al. [26].
he aforementioned models lack a single compartment to combine both
ublic and healthcare workers. Another mathematical model presented
n organization strategies suitable to protect the healthcare workforce
hrough formulating a compartment of health workforce alone without
ncluding the general public [30].

Despite the fact that it is hard to separate healthcare workers
rom the general community, there exists no mathematical model that
ombines healthcare workers and the general public in a single com-
artment and focuses on the protection of healthcare workers against
OVID-19. Protection of this important health workforce will be possi-
le if the transmission is minimized among the health co-workers. Also,
inimizing the spread of infection between the community and health-

are workers will be the other way of protecting healthcare workers.
o, there is a need of having a single-compartment mathematical model
hich takes into account both public control measures (as a parameter)
nd healthcare workers (as an independent compartment). Combining
hese two in a given mathematical model helps in protecting healthcare
orkers through effective use of personal protective equipment and
inimize the spread of COVID-19 infection by implementing control
2

easures in the general public. N95 masks (N stand for non resistant e
o oil, N95 respirator filters out the airborne particles by 95%), isolation
ooths, face, and eye shields are the personal protective equipment that
ignifies the level of protection [28].

This study formulates and analyzes the mathematical model for
OVID-19 which takes into account both public control measures (as
parameter) and healthcare workers (as an independent compart-
ent), which is the extension of the work done by Buhat et al. [26],

ánchez-Taltavull et al. [30]. Two important parameters introduced
n the model are 𝜃 to represent physical distancing, face masks, san-
tation, and hygiene which minimizes COVID-19 in the community,
nd 𝜉 to represent effective use of personal protective equipment by
ealthcare workers. Furthermore, this study determines how much the
ransmission rate of healthcare workers influences the model output.

This paper is structured as follows. After the introduction given
n Section ‘‘Introduction’’, a mathematical model of COVID-19 trans-
ission dynamics taking into account both healthcare workers as an

ndependent compartment and public control measures as a parameter
s formulated in Section ‘‘Model formulation’’. The dynamics of the
odel are analyzed in Section ‘‘Model analysis’’. The numerical results
hich include model simulation by using the fourth-order Runge–
utta method, model fitting and identifiability of model parameter are
erformed in Section ‘‘Numerical simulation’’. These results support
alidating theoretical results. The last section presents conclusions,
iscussion and the future direction.

odel formulation

This section presents model development, model assumption, model
low diagram and model equations. In model development, a general
verview of the deterministic model is provided.

odel development

An infectious disease may spread in a complex manner when having
ifferent interacting variables. Mathematical models are among the tool
sed to analyze and predict the disease spread and its severity. To
ave a deeper insight on COVID-19 dynamics, this study formulated
biological compartmental model where the human population is di-

ided into seven compartments: susceptible individuals (S), healthcare
orkers (W), exposed individuals (E), symptomatic infected individuals
𝐼𝑠), asymptomatic infected individuals (𝐼𝑎), hospitalized individuals
H) and recovered individuals (R). The total human population 𝑁(𝑡)
s given by

(𝑡) = 𝑆(𝑡) +𝑊 (𝑡) + 𝐸(𝑡) + 𝐼𝑠(𝑡) + 𝐼𝑎(𝑡) +𝐻(𝑡) + 𝑅(𝑡).

The natural human natality rate for both susceptible and healthcare
orkers are 𝛬 and b, respectively. There is a fraction of healthcare
orkers which move to susceptible class. Susceptible (S) and healthcare
orkers population (W) get infected from enough contact with infected

lass 𝐼𝑠 at the rate of 𝛽1 and 𝛽2, respectively and then move to exposed
lass (E). The progression of the exposed population to symptomatic
nd asymptomatic infectious is at the rate of 𝛼 and 𝜌, respectively.
ymptomatic and asymptomatic infectious individuals may be hospi-
alized at the rate of 𝜈 and 𝜖, respectively. Infected individuals recover
aturally or through local treatment at a rate of 𝜂 and 𝛿, respectively,
ut hospitalized individuals recover at a rate of 𝜔. The chance of
einfection after recovery has been considered in this model so, the
ecovered class can become susceptible at a rate 𝛾. In all classes,
ndividuals can die with a natural mortality rate 𝜇 while infected
ndividuals (𝐼𝑠 and 𝐼𝑎) and hospitalized humans decrease as a result
f COVID-19 related death at a rate of d. In this model, there are two
orces of infection which are (1−𝜃)𝛽1𝐼𝑠𝑆 and (1−𝜉)𝑟𝛽2𝑊 𝐼𝑠 where 𝜉 is a
raction of healthcare workers who effectively use personal protective
quipment. Also, 𝜃 represents a fraction of effective use of face masks,
anitation, hygiene, and maintenance physical distancing. We assumed
ll aforementioned measures work best in the mass gathering when

ffectively implemented.
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Table 1
Model parameter description.

Parameter Description

𝛬 Natural natality rate of susceptible
𝑏 Recruitment rate of healthcare workers
𝜉 proportional use of personal protective equipment
𝛽1 Disease transmission rate
𝛽2 Transmission rate of healthcare workers
𝜇 Natural mortality rate
𝛼 Progression rate from exposed stage to symptomatic infectious stage
𝜌 Progression rate from exposed stage to asymptomatic infectious stage
𝜈 Hospitalization rate of symptomatic infected individuals
𝜖 Hospitalization rate of asymptomatic infectious individuals
𝜔 Recovery rate of hospitalized population
𝜂 The rate in which symptomatic infectious population recover
𝛿 The rate in which asymptomatic infectious population recover
𝑑 Disease induced death rate
𝑟 proportional of healthcare workers
𝛾 Waning rate of disease-induced immunity
𝜃 The rate of wearing masks, sanitation, hygiene and physical distancing

Model assumptions

Description of infectious diseases through deterministic models need
to have some assumptions to be considered based on the characteristics
of a specific disease under consideration. In this case, the following are
some of the assumptions to be considered in formulating a COVID-19
model (1):

i. The members of the population mix homogeneously.
ii. Transmission is only from human to human.

iii. Asymptotically infectious individuals are assumed to be less
likely to transmit the disease since they cannot cough or sneeze
as symptomatic but this is still being debated globally [31].

Model flow diagram and model equations

The model flow diagram illustrated in Fig. 1 lead to the model
Eq. (1).

𝑑𝑆
𝑑𝑡

= 𝛬 + (1 − 𝑟)𝑊 + 𝛾𝑅 − (𝜇 + (1 − 𝜃)𝛽1𝐼𝑠)𝑆,

𝑑𝑊
𝑑𝑡

= 𝑏 − 𝜇𝑊 − (1 − 𝑟)𝑊 − (1 − 𝜉)𝑟𝛽2𝑊 𝐼𝑠,

𝑑𝐸
𝑑𝑡

= (1 − 𝜃)𝛽1𝐼𝑠𝑆 + (1 − 𝜉)𝑟𝛽2𝑊 𝐼𝑠 − (𝛼 + 𝜇 + 𝜌)𝐸,

𝑑𝐼𝑠
𝑑𝑡

= 𝛼𝐸 − (𝑑 + 𝜈 + 𝜇 + 𝜂)𝐼𝑠,

𝑑𝐼𝑎
𝑑𝑡

= 𝜌𝐸 − (𝜇 + 𝑑 + 𝛿 + 𝜖)𝐼𝑎,

𝑑𝐻
𝑑𝑡

= 𝜈𝐼𝑠 + 𝜖𝐼𝑎 − (𝜇 + 𝑑 + 𝜔)𝐻,

𝑑𝑅
𝑑𝑡

= 𝜂𝐼𝑠 + 𝜔𝐻 + 𝛿𝐼𝑎 − (𝜇 + 𝛾)𝑅.

(1)

The system of Eq. (1) is subjected to the initial conditions: 𝑆(0) = 𝑆0 ≥
0,𝑊 (0) = 𝑊0 ≥ 0, 𝐼𝑎(0) = (𝐼𝑎)0 ≥ 0, 𝐼𝑠 = (𝐼𝑠)0 ≥ 0, 𝐸(0) = 𝐸0 ≥ 0,𝐻(0) =
𝐻0 ≥ 0, 𝑅(0) = 𝑅0 ≥ 0. The parameters for the system of model (1) are
described in Table 1.

Model analysis

This section presents model properties (i.e positivity and invariant),
computation of basic reproduction number, existence and uniqueness
of the solution. Also, equilibria and their stability results are provided
3

in this section.
Positivity of the solution

A population is biologically meaningful and well defined if all model
solutions are non-negative for all 𝑡 ≥ 0.

Theorem 1. If the initial data [𝑆(0),𝑊 (0), 𝐸(0), 𝐼𝑠(0), 𝐼𝑎(0),𝐻(0),
𝑅(0)] ≥ 0, then the solution for S(t),W(t),E(t), 𝐼𝑠(𝑡), 𝐼𝑎(𝑡),H(t),R(t) of the
system of model (1) is non negative ∀𝑡 ≥ 0.

Proof. To prove this theorem, we used the approach in [32], where
we take into account system of model (1). Consider the first equation
from model (1),
𝑑𝑆
𝑑𝑡

= 𝛬 + (1 − 𝑟)𝑊 + 𝛾𝑅 − (𝜇 + (1 − 𝜃)𝛽1𝐼𝑠)𝑆. (2)

Omitting the first three terms and introducing inequality in Eq. (2)
leads to
𝑑𝑆
𝑑𝑡

≥ −(𝜇 + (1 − 𝜃)𝛽1𝐼𝑠)𝑆. (3)

pply variable separable technique in Eq. (3) and introduce limit from
to 𝑡 results

∫

𝑆(𝑡)

𝑆(0)

𝑑𝑆
𝑆

≥ −∫

𝑡

0
(𝜇 + (1 − 𝜃)𝛽1𝐼𝑠)𝑑𝑡.

urther simplification leads to:

(𝑡) ≥ 𝑆(0)𝑒−(𝜇+(1−𝜃)𝛽1𝐼𝑠)𝑡, which implies

(𝑡) ≥ 0.

This shows that the solution for susceptible population (S) is non-
egative ∀𝑡 ≥ 0.

Doing the same approach to the remaining equations in the model
(1), it can be simply shown that 𝑊 (𝑡) ≥ 0, 𝐸(𝑡) ≥ 0, 𝐼𝑠(𝑡) ≥ 0, 𝐼𝑎(𝑡) ≥
,𝐻(𝑡) ≥ 0, 𝑅(𝑡) ≥ 0 for all 𝑡 ≥ 0. Therefore (𝑆(𝑡),𝑊 (𝑡), 𝐸(𝑡), 𝐼𝑠(𝑡), 𝐼𝑎(𝑡)
𝐻(𝑡), 𝑅(𝑡)) of the model Eq. (1) is non negative ∀𝑡 ≥ 0. This completes
he proof of Theorem 1 □

he invariant region

The invariant region describes the domain where all solutions to
he model (1) are of biological and mathematical importance. All the
odel parameters are non-negative for all 𝑡 ≥ 0. Also, the solutions with
ositive initial data remain non-negative with all t≥ 0 and are bound.

heorem 2. The solution set of 𝑆(𝑡),𝑊 (𝑡), 𝐸(𝑡), 𝐼𝑠(𝑡), 𝐼𝑎(𝑡),𝐻(𝑡), 𝑅(𝑡) of
he model Equation system (1) is confined in a positive feasible region 𝜙.

roof. Suppose the feasible region 𝜙 = (𝑆(𝑡),𝑊 (𝑡), 𝐸(𝑡), 𝐼𝑠(𝑡), 𝐼𝑎(𝑡),
(𝑡), 𝑅(𝑡)) ∈ R7

+ for ∀𝑡 ≥ 0. At any time 𝑡 the total human population
(𝑡) will be: 𝑁(𝑡) = 𝑆(𝑡) + 𝑊 (𝑡) + 𝐸(𝑡) + 𝐼𝑠(𝑡) + 𝐼𝑎(𝑡) + 𝐻(𝑡) + 𝑅(𝑡).
ifferentiating with respect to 𝑡 leads to

𝑑𝑁
𝑑𝑡

= 𝑑𝑆
𝑑𝑡

+ 𝑑𝑊
𝑑𝑡

+ 𝑑𝐸
𝑑𝑡

+
𝑑𝐼𝑠
𝑑𝑡

+
𝑑𝐼𝑎
𝑑𝑡

+ 𝑑𝐻
𝑑𝑡

+ 𝑑𝑅
𝑑𝑡

. (4)

Substitute Eq. (1) into Eq. (4), further simplification result into,
𝑑𝑁
𝑑𝑡

= 𝛬 + 𝑏 − 𝜇(𝑆 +𝑊 + 𝐸 + 𝐼𝑠 + 𝐼𝑎 +𝐻 + 𝑅) − (𝐼𝑠 + 𝐼𝑎 +𝐻)𝑑. (5)

Since 𝑁 = 𝑆 +𝑊 +𝐸 + 𝐼𝑠 + 𝐼𝑎 +𝐻 +𝑅, then Eq. (5) is reduced to,
𝑑𝑁
𝑑𝑡

= 𝛬 + 𝑏 − 𝜇𝑁 − (𝐼𝑠 + 𝐼𝑎 +𝐻)𝑑. (6)

Assume that there is no disease-induced death for symptomatic,
symptomatic infectious, and hospitalized population due treatment
n all three aforementioned classes and introducing inequality, Eq. (6)
ecomes
𝑑𝑁 ≤ 𝛬 + 𝑏 − 𝜇𝑁. (7)

𝑑𝑡
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Fig. 1. Schematic diagram of COVID-19.
Separating the variable, introducing integral on both sides for Eq. (7),
and then applying limits from 0 to 𝑡 gives

∫

𝑁(𝑡)

𝑁(0)

𝑑𝑁
𝛬 + 𝑏 − 𝜇𝑁

≤ ∫

𝑡

0
𝑑𝑡.

Further simplification leads to

𝑁(𝑡) ≤ 𝛬 + 𝑏
𝜇

(1 − 𝑒−𝜇𝑡) +𝑁0𝑒
−𝜇𝑡.

When 𝑡 → 0, 𝑁(𝑡) → 𝑁0 and when 𝑡 → ∞, 𝑁(𝑡) → 𝛬+𝑏
𝜇 . Finally

𝜙 = (𝑆,𝑊 ,𝐸, 𝐼𝑠, 𝐼𝑎,𝐻,𝑅) ∈ R7
+ ∶ 0 ≤ 𝑁(𝑡) ≤ 𝛬+𝑏

𝜇 . The domain 𝜙
is a positive invariant under the flow induced by the system model
(1). Therefore all feasible solutions of the model (1) enter the region
𝜙, hence the proposed COVID-19 model system (1) is well-posed and
is both epidemiologically and mathematically meaningful and we con-
sider to generate the analysis. This implies that, the model system is
positive invariant in the region

𝜙 = (𝑆(𝑡),𝑊 (𝑡), 𝐸(𝑡), 𝐼𝑠(𝑡), 𝐼𝑎(𝑡),𝐻(𝑡), 𝑅(𝑡)) ∈ R7
+ ∶ 0 ≤ 𝑁(𝑡) ≤ 𝛬 + 𝑏

𝜇
,

for [𝑆(0),𝑊 (0), 𝐸(0), 𝐼𝑠(0), 𝐼𝑎(0),𝐻(0), 𝑅(0)] ≥ 0 ∈ 𝜙 and this completes
the proof. □

Existence and uniqueness for 𝑆𝑊 𝐸𝐼𝑠𝐼𝑎𝐻𝑅 model solution

Consider the ordinary differential equation in the form of
𝑑𝑦
𝑑𝑡

= 𝑓 (𝑡, 𝑦), 𝑦(𝑡0) = 𝑦0. (8)

By using Eq. (8) the interest will be to determine the condition that
will lead the solution to be existing and condition to impose in order
to have a unique solution.

This study applied the following two theorems to establish the
existence and uniqueness of the solution of this model (1).

Theorem 3 (Uniqueness of Solution). As proposed in [33], Let D denote
the domain:

∣ 𝑡 − 𝑡0 ∣≤ 𝑎, ∣∣ 𝑦 − 𝑦0 ∣∣≤ 𝑏, 𝑦 = (𝑦1, 𝑦2,… , 𝑦𝑛), 𝑦0 = (𝑦10, 𝑦20,… , 𝑦𝑛0). (9)

Suppose that 𝑓 (𝑡, 𝑦) satisfies the Lipschitz condition:

∣∣ 𝑓 (𝑡, 𝑦2) − 𝑓 (𝑡, 𝑦1) ∣∣≤ 𝑘 ∣∣ 𝑦2 − 𝑦1 ∣∣, (10)

and whenever the pair of (𝑡, 𝑦1) and (𝑡, 𝑦2) belong to the domain D, where 𝑘
represents a non-negative constant. Then, there exist a constant 𝛿 > 0 such
4

that there exists a unique (exactly one) continuous vector solution 𝑦(𝑡) of the
system (9) in the interval ∣ 𝑡− 𝑡0 ∣≤ 𝛿. It is important to note that condition
(10) is satisfied by the requirement that:

{ 𝜕𝑓𝑖
𝜕𝑦𝑗

, 𝑖, 𝑗 = 1, 2,… , 𝑛,

be continuous and bounded in the domain D.

Lemma 1. If 𝑓 (𝑡, 𝑦) has continuous partial derivative 𝜕𝑓𝑖
𝜕𝑦𝑗

on a bounded
closed convex domain R. The interest is on the domain:

1 < 𝜖 < R. (11)

So we look for a bounded solution of the form 0 < R < ∞ as proposed in
the study [33]. In proving Lemma 1 we need to consider Theorem 4.

Theorem 4 (Existence of the Solution). Let D denotes the domain defined
in (9) such that Eqs. (10) and (11) hold. Then there exists a solution of
a model system of Eq. (1) in our model system, which is bounded in the
domain D. Consider the system of Eq. (1);

𝐹1 = 𝛬 + 𝛾𝑅 + (1 − 𝑟)𝑊 − (𝜇 + (1 − 𝜃)𝛽1𝐼𝑠)𝑆,

𝐹2 = 𝑏 − 𝜇𝑊 − (1 − 𝑟)𝑊 − (1 − 𝜉)𝑟𝛽2𝑊 𝐼𝑠,

𝐹3 = (1 − 𝜃)𝛽1𝐼𝑠𝑆 + (1 − 𝜉)𝑟𝛽2𝑊 𝐼𝑠 − (𝛼 + 𝜇 + 𝜌)𝐸,

𝐹4 = 𝛼𝐸 − (𝑑 + 𝜈 + 𝜇 + 𝜂)𝐼𝑠,

𝐹5 = 𝜌𝐸 − (𝜇 + 𝑑 + 𝛿 + 𝜖)𝐼𝑎,

𝐹6 = 𝜈𝐼𝑠 + 𝜖𝐼𝑎 − (𝜇 + 𝑑 + 𝜔)𝐻,

𝐹7 = 𝜂𝐼𝑠 + 𝜔𝐻 + 𝛿𝐼𝑎 − (𝜇 + 𝛾)𝑅.

(12)

Proof. Consider the first equation of the system of Eq. (12) for the sake
of proving this,

𝐹1 = 𝛬 + 𝛾𝑅 + (1 − 𝑟)𝑊 − (𝜇 + (1 − 𝜃)𝛽1𝐼𝑠)𝑆. (13)

We need to show that Eq. (13) is continuous and bounded by determin-
ing the partial derivatives of 𝐹 with respect to all state variables (S,
1
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W, E , 𝐼𝑠, 𝐼𝑎,H, R).
𝜕𝐹1
𝜕𝑆

= −(𝜇 + (1 − 𝜃)𝛽1𝐼𝑠),
|

|

|

|

𝜕𝐹1
𝜕𝑆

|

|

|

|

= |

|

−(𝜇 + (1 − 𝜃)𝛽1𝐼𝑠)|| < ∞,

𝜕𝐹1
𝜕𝑊

= 1 − 𝑟,
|

|

|

|

𝜕𝐹1
𝜕𝑊

|

|

|

|

= |1 − 𝑟| < ∞,

𝜕𝐹1
𝜕𝐸

= 0,
|

|

|

|

𝜕𝐹1
𝜕𝐸

|

|

|

|

= |0| < ∞,

𝜕𝐹1
𝜕𝐼𝑠

= (1 − 𝜃)𝛽1𝑆,
|

|

|

|

𝜕𝐹1
𝜕𝐼𝑠

|

|

|

|

= |

|

(1 − 𝜃)𝛽1𝑆|| < ∞,

𝜕𝐹1
𝜕𝐼𝑎

= 0,
|

|

|

|

𝜕𝐹1
𝜕𝐼𝑎

|

|

|

|

= |0| < ∞,

𝜕𝐹1
𝜕𝐻

= 0,
|

|

|

|

𝜕𝐹1
𝜕𝐻

|

|

|

|

= |0| < ∞,

𝜕𝐹1
𝜕𝑅

= 𝛾,
|

|

|

|

𝜕𝐹1
𝜕𝑅

|

|

|

|

= |𝛾| < ∞.

All partial derivatives of Eq. (13) verify that the given solution is
ontinuous and bounded. Similarly, taking partial derivatives to the
emaining equations in a model system (12) as applied in Eq. (13)
ill lead to the proof of continuity and boundedness of their solutions.
herefore basing the prove of Eq. (13), we conclude that all partial
erivatives of Eq. (12) are continuous and bounded, hence, by Theo-
em 3, we can say that there exists a unique solution of Eq. (1) in the
egion D which is the proof of the theorem. □

isease free equilibrium solution

The point where there is no disease is referred to as a disease-free
quilibrium. We obtain this point by equating the right-hand side of
ll system of Eq. (1) equal to zero and substituting 𝐸 = 𝐼 = 𝐻 =

𝑅 = 0 in all equations. let 𝐹0 be the disease-free point, therefore
0 =

(

𝑆0,𝑊 0, 𝐸0, 𝐼0𝑠 , 𝐼
0
𝑎 ,𝐻

0, 𝑅0) =
(

𝑏(1−𝑟)+𝛬(𝜇+𝑟−1)
𝜇(𝜇−𝑟+1) , 𝑏

𝜇+1−𝑟 , 0, 0, 0, 0, 0
)

.

asic reproduction number

The basic reproduction number is defined as the expected number
f COVID-19 cases created by a single COVID-19 infected individual
n the population during the entire period of infectiousness. In this
odel, the basic reproduction number is computed using the next

eneration approach in [34]. The matrix F denotes the generation
f new infections while matrix V denotes the disease transfer among
ompartments evaluated at disease-free equilibrium.

=

⎛

⎜

⎜

⎜

⎜

⎝

0 𝛽1(1 − 𝜃)(𝛬(𝜇+1−𝑟)+𝑏(1−𝑟)𝜇(𝜇+1−𝑟) ) + (1−𝜉)𝑟𝛽2𝑏
𝜇+1−𝑟 0 0

0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

,

n other hand,

=

⎛

⎜

⎜

⎜

⎜

⎝

𝛼 + 𝜇 + 𝜌 0 0 0
−𝛼 𝑑 + 𝜂 + 𝜇 + 𝜈 0 0
−𝜌 0 𝑑 + 𝛿 + 𝜇 + 𝜖 0
0 −𝜈 −𝜖 𝑑 + 𝜇 + 𝜔

⎞

⎟

⎟

⎟

⎟

⎠

.

Basic reproduction number is the spectral radius of the next-generation
matrix, thus

𝑅0 = 𝜌(𝐹𝑉 −1) = 𝑚𝑎𝑥(𝜆1, 𝜆2).

𝑅0 =
𝛼𝛽1(𝜃 − 1)((𝑟 − 1)(𝑏 + 𝜆) − 𝜆𝜇) + 𝛼𝜇(1 − 𝜉)𝑟𝑏𝛽2

𝜇(𝜇 − 𝑟 + 1)(𝛼 + 𝜇 + 𝜌)(𝑑 + 𝜂 + 𝜇 + 𝜈)
.

Local stability of the disease free equilibrium (DFE)

Local stability of the disease-free equilibrium is investigated by
using the eigenvalues which are obtained by determining the par-
tial derivatives of the vector-valued function. An equilibrium point is
asymptotically stable if the Jacobian matrix evaluated at that point has
negative eigenvalues. In this paper, the Routh–Hurwitz criterion in [35]
will be used to prove the local stability of the disease-free equilibrium.
5

Theorem 5. The disease free equilibrium of the model is locally asymptot-
ically stable if 𝑅0 < 1 and unstable if 𝑅0 > 1.

Proof. In proofing this theorem, linearization of the system of model
(1) is done by computing its Jacobian matrix 𝐽𝐸0

. The Jacobian matrix
is computed at the disease-free equilibrium point by partial derivatives
of each equation in the system for state variable 𝑆,𝑊 ,𝐸, 𝐼𝑠, 𝐼𝑎, H and
R.

𝐽𝐷𝐹𝐸

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−𝜇 1 − 𝑟 0 𝑐1 0 0 𝛾
0 −(𝜇 − 1 + 𝑟) 0 𝑐3 0 0 0
0 0 −(𝜌 + 𝜇 + 𝛼) 𝑐2 0 0 0
0 0 𝛼 0 −𝑐4 0 0
0 0 𝜌 0 −𝑐5 0 0
0 0 0 𝜈 𝜖 −(𝑑 + 𝜇 + 𝜔) 0
0 0 0 𝜂 𝛿 𝜔 −(𝜇 + 𝛾)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(14)

where

𝑐1 = 𝛽1(1 − 𝜃)
𝛬(𝜇 + 1 − 𝑟) + 𝑏(1 − 𝑟)

𝜇(𝜇 + 1 − 𝑟)
,

2 =
(1 − 𝜉)𝑟𝑏𝛽2
𝜇 + 1 − 𝑟

+ (1 − 𝜃)𝛽1
𝛬(𝜇 + 1 − 𝑟) + (1 − 𝑟)𝑏

𝜇(𝜇 + 1 − 𝑟)
,

𝑐3 =
−(1 − 𝜉)𝑟𝑏𝛽2
𝜇 + 1 − 𝑟

,

4 = (𝑑 + 𝜇 + 𝜂 + 𝜈),

5 = (𝜇 + 𝑑 + 𝛿 + 𝜖).

It is clear that from the matrix represented by Eq. (14) the first,
econd, third and fourth eigenvalues are 𝜆1 = −𝜇, 𝜆2 = −(𝜇 + 𝛾),
3 = −(𝜇 + 𝑟 − 1), and 𝜆4 = −(𝑑 + 𝜇 + 𝜔).

Therefore the matrix (14) reduces to a (3 × 3) matrix after cancel-
ation of respective rows and columns used to obtain the first, second,
hird and fourth eigenvalues seen below.

𝐸0 =

⎛

⎜

⎜

⎜

⎝

−(𝛼 + 𝜇 + 𝜌) 𝛽1(1−𝜃)(𝑏(1−𝑟)+𝛬(𝜇−𝑟+1))
𝜇(𝜇−𝑟+1)

+ (1−𝜉)𝑟𝑏𝛽2
𝜇−𝑟+1

0
𝛼 0 −(𝑑 + 𝜂 + 𝜇 + 𝜈)
𝜌 0 −(𝑑 + 𝛿 + 𝜇 + 𝜖)

⎞

⎟

⎟

⎟

⎠

.

The characteristic polynomial is of the form

𝑍(𝜆) = 𝜆3 + 𝑎1𝜆
2 + 𝑎2𝜆 + 𝑎3,

where, 𝑎1 = 𝛼 + 𝑑 + 𝛿 + 2𝜇 + 𝜌 + 𝜖,

𝑎2 =
𝛼𝛽1(𝑏(𝜃(𝑟−1)+𝑟+1)+(𝜃−1)𝛬(−𝜇+𝑟−1)+𝜇(−𝜇+𝑟−1)(𝛼+𝜇+𝜌)(𝑑+𝛿+𝜇+𝜖)+𝛼𝜇(1−𝜉)𝑟𝑏𝛽2)

𝜇(𝜇−𝑟+1) .
So 𝑎2 > 0 if

𝛼𝑏𝛽1𝜃(1−𝑟)
𝜇(𝜇−𝑟+1) + (𝛼 + 𝜇 + 𝜌)(𝑑 + 𝛿 + 𝜇 + 𝜖) > 𝛼𝛽1(1−𝜃)𝛬(𝜇−𝑟+1)+(1−𝜉)𝛼𝜇𝑟𝑏𝛽2

𝜇(𝜇−𝑟+1) ,

𝑎3 =
(𝑅0(𝛼+𝜇+𝜌)(𝑑+𝜂+𝜇+𝜈))(𝛼(𝑑+𝛿+𝜇+𝜖)−𝜌(𝑑+𝜂+𝜇+𝜈))

𝛼 .
So 𝑎3 > 0 if 𝛼(𝑑+𝛿+𝜇+𝜖)(𝑅0(𝛼+𝜇+𝜌)(𝑑+𝜂+𝜇+𝜈))

𝛼

> 𝜌(𝑑+𝜂+𝜇+𝜈)(𝑅0(𝛼+𝜇+𝜌)(𝑑+𝜂+𝜇+𝜈))
𝛼 .

We have got 𝑎1 > 0, 𝑎2 > 0 and 𝑎3 > 0 so just need to find the
condition for 𝑎1𝑎2 − 𝑎3 > 0.

Consider the value of 𝑎1𝑎2 − 𝑎3,

1𝑎2 − 𝑎3 =
(

𝑚1 − 𝑚2
)

(𝛼 + 𝑑 + 𝛿 + 2𝜇 + 𝜌 + 𝜖)

− 𝛼𝑅0(𝛼 + 𝜇 + 𝜌)(𝑑 + 𝛿 + 𝜇 + 𝜖)(𝑑 + 𝜂 + 𝜇 + 𝜈) + 𝑚3.

The condition for 𝑎1𝑎2 − 𝑎3 to be greater than zero is:

1(𝛼 + 𝑑 + 𝛿 + 2𝜇 + 𝜌 + 𝜖) + 𝑚3 > 𝑚1𝑚2(𝛼 + 𝑑 + 𝛿 + 2𝜇 + 𝜌 + 𝜖)

+ 𝛼𝑅0(𝛼 + 𝜇 + 𝜌)(𝑑 + 𝛿 + 𝜇 + 𝜖)(𝑑 + 𝜂 + 𝜇 + 𝜈),
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where

𝑚1 =
𝛼𝑏𝛽1𝜃(1 − 𝑟)
𝜇(𝜇 − 𝑟 + 1)

+ (𝛼 + 𝜇 + 𝜌)(𝑑 + 𝛿 + 𝜇 + 𝜖),

𝑚2 =
𝛼𝛽1(1 − 𝜃)𝛬(𝜇 − 𝑟 + 1) + (1 − 𝜉)𝛼𝜇𝑟𝑏𝛽2

𝜇(𝜇 − 𝑟 + 1)
,

𝑚3 =
𝜌(𝑑 + 𝜂 + 𝜇 + 𝜈)

(

𝑅0(𝛼 + 𝜇 + 𝜌)(𝑑 + 𝜂 + 𝜇 + 𝜈)
)

𝛼
.

According to the Routh–Hurwitz criterion, the necessary and suffi-
ient condition for the stability of any system is that all the factors of
he characteristic polynomial of a system must be negative. Since the
igenvalues are negative and conditions for the Routh–Hurwitz criteria
re met, therefore the disease is asymptotically stable. □

Existence of endemic equilibrium point

The endemic equilibrium point is a steady-state solution in which
the disease exists in the population. This solution is obtained when we
take all derivatives of Eq. (1) to be equal to zero and let its solution
being represented by 𝐷𝐸 = (𝑆∗,𝑊 ∗, 𝐸∗, 𝐼∗𝑠 , 𝐼

∗
𝑎 ,𝐻

∗, 𝑅∗).
For the existence of the endemic equilibrium conditions 𝑆∗ >

0,𝑊 ∗ > 0, 𝐸∗ > 0, 𝐼∗𝑠 > 0, 𝐼∗𝑎 > 0,𝐻∗ > 0, 𝑅∗ > 0 must be satisfied.

𝐼∗
𝑠 = 𝛼𝐸∗

𝑑 + 𝜂 + 𝜇 + 𝜈
, 𝐼∗

𝑎 =
𝐸∗𝜌

𝑑 + 𝛿 + 𝜇 + 𝜖
,

𝑊 ∗ = 𝑏
𝜇 + (1 − 𝜉)𝛽2𝐼∗

𝑠 𝑟 − 𝑟 + 1
, 𝐻∗ =

𝜈𝐼∗
𝑠 + 𝐼∗

𝑎 𝜖
𝑑 + 𝜇 + 𝜔

,

𝑅∗ =
𝐻∗𝜔 + 𝜂𝐼∗

𝑠 + 𝛿𝐼∗
𝑎

(𝜇 + 𝛾)
, 𝐸∗ =

(1 − 𝜉)𝛽2𝐼∗
𝑠 𝑟𝑊

∗ − 𝛽1𝜃𝐼∗
𝑠 𝑆

∗ + 𝛽1𝐼∗
𝑠 𝑆

∗

𝛼 + 𝜇 + 𝜌
,

𝑆∗ =
𝛬 − 𝑟𝑊 ∗ + 𝛾𝑅∗ +𝑊 ∗

𝜇 − 𝛽1𝜃𝐼∗
𝑠 + 𝛽1𝐼∗

𝑠
.

In this case, the solution exists and it is unique. From these con-
itions, we conclude that the endemic equilibrium solution is stable if
nd only if 𝑅0 > 1 exhibits persistence of COVID-19 transmission in the
opulation.

lobal stability of disease free equilibrium

This study analyzes the global stability of the disease-free equilib-
ium point of model (1) by using an approach presented in [36]. The
odel can be written in the following format:

𝑑𝑦𝑛
𝑑𝑡

= 𝐵(𝑦𝑛 − 𝑦𝐷𝐹𝐸 ) + 𝐵1𝑦𝑖,

nd
𝑑𝑦𝑖
𝑑𝑡

= 𝐵2𝑦𝑖.

From the two equations above 𝑦𝑛 and 𝑦𝑖 are vectors of no trans-
mitting and transmitting compartments respectively, and 𝑦𝐷𝐹𝐸 is the
vector at the disease-free equilibrium of the same length as 𝑦𝑛 where
𝑦𝑛 = (𝑆,𝑊 ,𝑅)𝑇 , 𝑦𝑖 = (𝐸, 𝐼𝑠, 𝐼𝑎,𝐻)𝑇 .

𝑦𝐷𝐹𝐸 = (
𝛬(𝜇 + 1 − 𝑟) + 𝑏(1 − 𝑟)

𝜇(𝜇 + 1 − 𝑟)
, 𝑏
𝜇 + 1 − 𝑟

, 0)𝑇 , and

𝑦𝑛 − 𝑦𝐷𝐹𝐸 =

⎛

⎜

⎜

⎜

⎝

𝑆 − 𝛬(𝜇+1−𝑟)+𝑏(1−𝑟)
𝜇(𝜇+1−𝑟)

𝑊 − 𝑏
𝜇+1−𝑟
𝑅

⎞

⎟

⎟

⎟

⎠

.

For global stability of DFE we need to show that matrix B has a real
egative eigenvalues and 𝐵2 is a Metzler matrix (i.e the off-diagonal
lements of 𝐵2 are non-negative, symbolically denoted by 𝐵2(𝑦𝑖𝑗 ) ≥
,∀ ≠ 𝑗). From model (1) we can obtain equations with and without
ransmission which can be written as follows:

⎛

⎜

⎜

𝛬 + (1 − 𝑟)𝑊 + 𝛾𝑅 − (𝜇 + (1 − 𝜃)𝛽1𝐼𝑠)𝑆
𝑏 − 𝜇𝑊 − (1 − 𝑟)𝑊 − (1 − 𝜉)𝑟𝛽2𝑊 𝐼𝑠

⎞

⎟

⎟

6

⎝ 𝜂𝐼𝑠 + 𝜔𝐻 + 𝛿𝐼𝑎 − (𝜇 + 𝛾)𝑅 ⎠
= 𝐵

⎛

⎜

⎜

⎜

⎝

𝑆 − 𝜆(𝜇+1−𝑟)+𝑏(1−𝑟)
𝜇(𝜇+1−𝑟)

𝑊 − 𝑏
𝜇+1−𝑟
𝑅

⎞

⎟

⎟

⎟

⎠

+ 𝐵1

⎛

⎜

⎜

⎜

⎜

⎝

𝐸
𝐼𝑠
𝐼𝑎
𝐻

⎞

⎟

⎟

⎟

⎟

⎠

,

and,

⎛

⎜

⎜

⎜

⎜

⎝

(1 − 𝜃)𝛽1𝐼𝑠𝑆 + (1 − 𝜉)𝑟𝛽2𝑊 𝐼𝑠 − (𝛼 + 𝜇 + 𝜌)𝐸
𝛼𝐸 − (𝑑 + 𝜈 + 𝜇 + 𝜂)𝐼𝑠
𝜌𝐸 − (𝜇 + 𝑑 + 𝛿 + 𝜖)𝐼𝑎

𝜈𝐼𝑠 + 𝜖𝐼𝑎 − (𝜇 + 𝑑 + 𝜔)𝐻

⎞

⎟

⎟

⎟

⎟

⎠

= 𝐵2

⎛

⎜

⎜

⎜

⎜

⎝

𝐸
𝐼𝑠
𝐼𝑎
𝐻

⎞

⎟

⎟

⎟

⎟

⎠

.

For compatibility of matrix B is 3 × 3, 𝐵1 should be 3 × 4 and 𝐵2 will
be 4 × 4. Using non-transmitting elements from the Jacobian matrix of
the system of the model Eq. (1) result to,

𝐵 =
⎛

⎜

⎜

⎝

−𝜇 1 − 𝑟 𝛾
0 −(𝜇 + 1 − 𝑟) 0
0 0 −(𝜇 + 𝛾)

⎞

⎟

⎟

⎠

,

𝐵1 =
⎛

⎜

⎜

⎝

0 −(1 − 𝜃)𝛽1𝑆 0 0
0 −(1 − 𝜉)𝑟𝛽2𝑊 0 0
0 𝜂 𝛿 𝜔

⎞

⎟

⎟

⎠

,

𝐵2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−(𝜇 + 𝛼 + 𝜌) (1 − 𝜃)𝛽1𝑆 + (1 − 𝜉)𝑟𝛽2𝑊 0 0
𝛼 −(𝜂 + 𝜈 + 𝜇 + 𝑑) 0 0
𝜌 0 −(𝑑 + 𝛿 + 𝜇 + 𝜖) 0
0 𝜈 𝜖 −(𝜇 + 𝜔 + 𝑑)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

The study found that B is a matrix whose eigenvalues are located on
the main diagonal. Therefore the eigenvalues of the given matrix B (i.e
−𝜇, (1−𝑟+𝜇) and −(𝜇+𝛾)) are real, distinct and negative. Additionally,
𝐵2 is a Metzler matrix since its off-diagonal elements are positive and
the leading diagonal entries are negative. Therefore, the DFE of our
system is globally asymptotically stable, thus we have established the
following important theorem.

Theorem 6. The disease free equilibrium point is globally asymptotically
stable if 𝑅0 < 1 and unstable if 𝑅0 > 1.

Global stability of endemic equilibrium

This study used the logarithmic Lyapunov function to analyze the
stability of endemic equilibrium as used in [37]. This logarithmic
function will be in this form 𝑃 =

∑

𝑎𝑖(𝑦𝑖 − 𝑦∗𝑖 𝑙𝑛(𝑦1)). Where 𝑎𝑖 is a
positive chosen constants, 𝑦𝑖 is population of compartment 𝑖 and 𝑦∗𝑖 is
the equilibrium level.

𝑃 (𝑆,𝑊 ,𝐸, 𝐼𝑠, 𝐼𝑎,𝐻,𝑅) = 𝐴1(𝑆 −𝑆∗𝑙𝑛𝑆)+𝐴2(𝑊 −𝑊 ∗𝑙𝑛𝑊 )+𝐴3(𝐸−
𝐸∗𝑙𝑛𝐸)+𝐴4(𝐼𝑠−𝐼∗𝑠 𝑙𝑛𝐼𝑠)+𝐴5(𝐼𝑎−𝐼∗𝑎 𝑙𝑛𝐼𝑎)+𝐴6(𝐻−𝐻∗𝑙𝑛𝐻)+𝐴7(𝑅−𝑅∗𝑙𝑛𝑅).

he constants 𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5, 𝐴6 and 𝐴7 are non negative and
he function P is chosen in such away that it is a continuous and
ifferentiable in space ▽.

𝑑𝑃
𝑑𝑡

=

⎧

⎪

⎪

⎨

⎪

⎪

𝐴1(1 −
𝑆∗

𝑆 ) 𝑑𝑆𝑑𝑡 + 𝐴2(1 −
𝑊 ∗

𝑊 ) 𝑑𝑊𝑑𝑡
+𝐴3(1 −

𝐸∗

𝐸 ) 𝑑𝐸𝑑𝑡 + 𝐴4(1 −
𝐼∗𝑠
𝐼𝑠
) 𝑑𝐼𝑠𝑑𝑡

+𝐴5(1 −
𝐼∗𝑎
𝐼𝑎
) 𝑑𝐼𝑎𝑑𝑡 + 𝐴6(1 −

𝐻∗

𝐻 ) 𝑑𝐻𝑑𝑡
𝑅∗ 𝑑𝑅

(15)
⎩+𝐴7(1 − 𝑅 ) 𝑑𝑡 .
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At endemic equilibrium point,

𝛬 = (𝜇 + (1 − 𝜃)𝛽1𝐼𝑠)𝑆∗

− 𝛾𝑅∗ − (1 − 𝑟)𝑊 ∗, 𝑏 = 𝜇𝑊 ∗ + (1 − 𝑟)𝑊 ∗ + (1 − 𝜉)𝑟𝛽2𝑊 ∗𝐼∗𝑠 ,

(𝜈 + 𝑑 + 𝜇 + 𝜂) = 𝛼𝐸∗

𝐼∗𝑠
, (𝛿 + 𝑑 + 𝜇 + 𝜖) =

𝜌𝐸∗

𝐼∗𝑎
,

𝑑 + 𝜇 + 𝜔 =
𝜈𝐼∗𝑠 + 𝜖𝐼∗𝑎

𝐻∗ , (𝜇 + 𝛾) =
𝜂𝐼∗𝑠 + 𝜔𝐻∗ + 𝛿𝐼∗𝑎

𝑅∗ ,

(𝛼 + 𝜇 + 𝜌)

=
(1 − 𝜃)𝛽1𝐼∗𝑠 𝑆

∗ + (1 − 𝜉)𝑟𝛽2𝑊 ∗𝐼∗𝑠
𝐸∗ .

It is possible to re-write Eq. (15) using the definition of the pa-
ameters value as indicated at endemic equilibrium point above which
esults to

𝑑𝑃
𝑑𝑡

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝐴1(1 −
𝑆∗

𝑆 )((𝜇 + (1 − 𝜃)𝛽1𝐼𝑠)𝑆∗

−𝛾𝑅∗ − (1 − 𝑟)𝑊 ∗ + (1 − 𝑟)𝑊 + 𝛾𝑅

−(𝜇 + (1 − 𝜃)𝛽1𝐼𝑠)𝑆)

+𝐴2(1 −
𝑊 ∗

𝑊 )(𝜇𝑊 ∗ + (1 − 𝑟)𝑊 ∗ + (1 − 𝜉)𝑟𝛽2𝑊 ∗𝐼∗𝑠
−𝜇𝑊 − (1 − 𝑟)𝑊 − (1 − 𝜉)𝑟𝛽2𝑊 𝐼𝑠)

+𝐴3(1 −
𝐸∗

𝐸 )((1 − 𝜃)𝛽1𝐼𝑠𝑆 + (1 − 𝜉)𝑟𝛽2𝑊 𝐼𝑠

− (1−𝜃)𝛽1𝐼∗𝑠 𝑆
∗+(1−𝜉)𝑟𝛽2𝑊 ∗𝐼∗𝑠
𝐸∗ 𝐸)

+𝐴4(1 −
𝐼∗𝑠
𝐼𝑠
)(𝛼𝐸 − 𝜌𝐸∗

𝐼∗𝑎
𝐼𝑠)

+𝐴5(1 −
𝐼∗𝑎
𝐼𝑎
)(𝜌𝐸 − 𝜌𝐸∗

𝐼∗𝑎
𝐼𝑎)

+𝐴6(1 −
𝐻∗

𝐻 )(𝜈𝐼𝑠 + 𝜖𝐼𝑎 −
𝜈𝐼∗𝑠 +𝜖𝐼

∗
𝑎

𝐻∗ 𝐻)

+𝐴7(1 −
𝑅∗

𝑅 )(𝜂𝐼𝑠 + 𝜔𝐻 + 𝛿𝐼𝑎 −
𝜂𝐼∗𝑠 +𝜔𝐻

∗+𝛿𝐼∗𝑎
𝑅∗ 𝑅).

(16)

urther simplification of Eq. (16) gives

𝑑𝑃
𝑑𝑡

= −𝜇𝐴1
(𝑆 − 𝑆∗)2

𝑆
− 𝑏𝐴2

(𝑊 −𝑊 ∗)2

𝑊
+ 𝐹 (𝐸, 𝐼𝑠, 𝐼𝑎,𝐻,𝑅), (17)

where F is the balance of the right term of Eq. (17). According to the
approach in [38,39], the function F is negative when (𝐸, 𝐼𝑠, 𝐼𝑎,𝐻,𝑅) ≥
0, thus 𝑑𝑃

𝑑𝑡 ≤ 0 or zero if 𝐸 = 𝐸∗,𝐻 = 𝐻∗, 𝑅 = 𝑅∗, 𝐼𝑠 = 𝐼∗𝑠 , 𝐼𝑎 = 𝐼∗𝑎 . By
LaSalle’s invariant principle [40] implies that in the interior of F the
endemic equilibrium point 𝐹 ∗ is globally asymptotically stable when
𝑅0 > 1. This results is summarized in the following the theorem.

Theorem 7. Endemic equilibrium 𝐹 ∗ is asymptotically stable when 𝑅0 > 1
and unstable when 𝑅0 < 1.

Numerical simulation

Model simulations are carried out using the values of the parameters
obtained from different existing literatures. Other parameters which
are not found in the literature were assumed basing on a reasonable
proportionality. This section covers sensitivity and uncertainty analysis,
dynamics population simulation, stability analysis of the model, the
effect of varying some parameters to study the model dynamics and
identifiability of model parameters. Numerical simulation in this study
is done by using Runge–Kutta fourth-order method, however there
are other numerical methods for simulations of non-linear differential
equations such as Milne method, Eulers’ method, Adams–Bashforth–
Moulton method [15,20,41].

Sensitivity and uncertainty analysis

The sensitivity analysis describes how the model’s parameters in-
fluence basic reproduction number 𝑅0. We performed a sensitivity
analysis of 𝑅0 for the model’s parameters using the method established
7

in [42]. Normalized forward sensitivity index of 𝑅0, depends on the n
Table 2
Parameter and Indices Value of the model.

Parameter Value Source Indices

𝛬 0.009 [43] 0.01740
𝜉 0.7 Assumed −0.0003
𝛽1 0.5944 [31] 0.9999
𝛽2 0.8 Assumed 0.0001
𝜇 0.008 [31] −0.9652
𝛼 0.6 [44] 1.9258
𝜂 0.2 Assumed 0.2330
𝜌 0.04 Assumed 0.0617
𝜈 0.65 Assumed 0.7475
𝑏 0.8 Assumed 0.9826
𝑟 0.4 Assumed −1.3244
𝑑 0.00011 [45] 0.0001
𝜃 0.61 Assumed −1.5639

Fig. 2. Elasticity indices for significance of parameters in 𝑅0.

ifferentiability of 𝑅0 with respect to a given parameter, say M, and
can be computed as:

𝑋𝑅0
𝑀 =

𝛿𝑅0
𝛿𝑀

𝑀
𝑅0

.

The value of basic reproduction number 𝑅0 obtained using all
parameters found in Table 2 is 2.8540. Also, when 𝜃=0 and 𝜉=0,
𝑅0 =4.6047. When 𝜃=0.8 and 𝜉=0.9, 𝑅0=0.4606. Under this note,
the implementation of public control measures in the community will
minimize the spread of COVID-19. Also, the effective use of per-
sonal protective equipment by the healthcare workers reduced the
transmission among the healthcare workers. This implies the two afore-
mentioned parameters are very important in suppressing the spread of
COVID-19.

Table 2 shows the parameters value and indices for the model
system (1). The most positive index is 𝛼. This implies that increasing
(decreasing) of 𝛼 by 10% will increase (decrease) the value of 𝑅0
by 19.258%. So, this parameter contributes positively to the model
output 𝑅0. The most negative sensitive parameter is 𝜃. This indicates
that the more the population practices these measures 𝜃 keeping other
parameters constant, the more the reduction of the spread of the
disease. For example when the population practices 𝜃 by 10% then the
value of 𝑅0 will be reduced by 15.639%. Numerical indices and their
signs indicated in Table 3 are also, shown in Fig. 2. Fig. 2 illustrates
the parameters which can easily influence negatively or positively the
spread of COVID-19. Fig. 3 depicts that control measures 𝜃 has a
egative correlation with 𝑅 while Fig. 4 indicates that 𝛽 has a positive
0 2
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Fig. 3. Effect 𝜃 on 𝑅0.

Fig. 4. Effect of 𝛽2 on 𝑅0.

correlation with 𝑅0. This implies that 𝜃 contribute negatively to the
pandemic while 𝛽2 contribute positively to COVID-19.

Dynamics of populations simulation

Studying the dynamics of compartments, model (1) is simulated us-
ing the Runge–Kutta method of the fourth-order. Fig. 5 indicates seven
different plots to represent various human populations. The susceptible
population and healthcare workers’ population decelerate exponen-
tially to acquire endemic equilibrium levels as they die naturally or
death due to a disease. Exposed, symptomatic, asymptomatic, hospi-
talized and recovered sub-population describes a parabola shape as it
increases exponentially to attain its maximum point before decelerating
exponentially to a specific endemic level.

Simulation on stability of endemic equilibrium point (EEP)

Numerical simulations for stability analysis are performed to val-
idate analytical results. The equilibrium point is said to be globally
asymptotically stable if the trajectories of the model state variables
originating from different initial values vary for some time, converge
to a common point and eventually maintain a constant horizontal level
called an endemic equilibrium point. For this case, the trajectories are
represented by red, yellow, magenta, black and blue solid plots that
converge towards the equilibrium point as the time approaches infinity.
Consider compartment S, suppose the initial value is (100, 90, 80, 70
8

Fig. 5. Dynamics of SWE𝐼𝑠𝐼𝑎HR sub-populations.

Fig. 6. Stability of the EEP for susceptible population.

Fig. 7. Stability of the EEP for healthcare workers population.
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Fig. 8. Stability of the EEP for exposed population.

Fig. 9. Stability of the EEP for symptomatic infectious population.

nd 60). Simulating model (1), we get different trajectories for S to vary
t the beginning but after approaching 8 all four stabilizes. This can be
bserved in Fig. 6. The same interpretations can be made from other
ompartments as seen in Figs. 7–12.

ffect of some parameters on the model

In this section, we have explored the behavior of each state variable
f the proposed COVID-19 model (1). Also, profiles for state variables
re graphically obtained through variation of some important param-
ters found in Table 2. Furthermore, mesh grid and contour plots are
ndicated to capture the behavior of 𝑅0 with respect to some parameters

Considering the trends of Fig. 13 it can be noticed that the sus-
eptible population increased to more than 9 people within only 15
ays after implementation of control measures by 80%. Fig. 14 reveals
hat when implementing 𝜃 by 0.8, symptomatic infectious population
educes to below 135 patients within only 10 days. Fig. 15 shows
hat the number of admitted people to the hospital reduces to 130
atients after 10 days while Fig. 16 indicates that recovered increase to
round 235 individuals when social distance, hygiene, and sanitation
s implemented.

Figs. 17 and 19 reveals that both asymptomatic and symptomatic
nfectious reduces to around 23 and 135 patients respectively, within
9

Fig. 10. Stability of the EEP for asymptomatic infectious population.

Fig. 11. Stability of the EEP for hospitalized population.

Fig. 12. Stability of the EEP for recovered population.
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Fig. 13. Effect of 𝜃 on susceptible population.

Fig. 14. Effect of 𝜃 on symptomatic population.

Fig. 15. Effect of 𝜃 on hospitalized humans.

0 days after getting treatment. Fig. 18 shows that about 254 individ-
als recovered due to treatment within 10 days while Fig. 20 indicates
hat about 235 patients recovered due to treatment within 10 days.
10
Fig. 16. Effect of 𝜃 on recovered humans.

Fig. 17. Effect of treatment (𝛿) on asymptomatic infectious population.

Fig. 18. Effect of treatment (𝛿) on recovered population.

Fig. 21 depicts that the number of healthcare workers started rising
after effective use of personal protective equipment. Fig. 22 shows that
hospitalized individuals decrease to about 128 patients within 10 days
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Fig. 19. Effect of treatment (𝜂) on symptomatic infectious.

Fig. 20. Effect of treatment (𝜂) on recovered population.

Fig. 21. Effect of personal protective equipment (𝜉) on healthcare workers population.

after treatment. Also, the profile of 𝑅0 versus some combination of
parameters selected randomly from Table 2 via contour plots and mesh
grids are shown in Figs. 23 and 24.
11
Fig. 22. Effect of treatment (𝜔) on hospitalized population.

Fig. 23. Dynamic behavior of 𝑅0 for varying 𝜔 and 𝜃 on H(t).

Numerical results reveals that 𝑅0 = 4.6047 which implies 𝑅0 > 1
in absence of protective measures. Since 𝑅0 > 1 this is a validation
of analytical results of disease-free equilibrium which is an unstable
and endemic point that is asymptotically stable. Also 𝑅0=0.4606 in the
presence of control measures in the general public and effective use
of personal protective equipment by healthcare workers. Since 𝑅0 < 1
this implies that disease-free equilibrium is asymptotically stable. This
proves the importance of having control measures as well as personal
protective equipment in controlling COVID-19 among the population
since 𝑅0 < 1.
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Fig. 24. Dynamic behavior of 𝑅0 for varying 𝜂 and 𝜃 on 𝐼𝑠(𝑡).

Identifiability of model parameters

This subsection is devoted to the identifiability of the Parameters
of the COVID-19 model (1). Some of the model (1) parameters as-
sessed the effectiveness of the control measures in minimizing the
12
Table 3
Parameter identifiability.
Parameter Value Estimate

𝛬 0.009 0.0093
𝜉 0.7 0.7269
𝛽1 0.5944 0.6130
𝛽2 0.8 0.8854
𝜇 0.008 0.0082
𝛼 0.6 0.6368
𝜂 0.2 0.0823
𝜌 0.04 0.0671
𝜈 0.65 0.4800
𝑏 0.8 0.9593
𝑟 0.4 0.3474
𝑑 0.00011 0.0001
𝜃 0.61 0.6160
𝜔 0.45 0.4459
𝜖 0.62 0.6325
𝛿 0.31 0.1500
𝛾 0.59 0.3955

transmission of COVID-19 in the entire community while others fo-
cused on protecting the healthcare workers for the sake of maintaining
the workforce. Parameter estimation is conducted by using the least-
squares method, where the idea here is to minimize the sum of squared
differences between the observations and the model:

𝑆𝑆(𝜃) =
𝑛
∑

𝑖=1
(𝑦𝑖 − 𝑓 (𝑥𝑖, 𝜃))2, (18)

where 𝑦𝑖 is observed data of all model (1) which correspond to
[𝑆𝑖,𝑊𝑖, 𝐸𝑖, (𝐼𝑎)𝑖, (𝐼𝑠)𝑖,𝐻𝑖, 𝑅𝑖] and 𝑓 (𝑥𝑖, 𝜃) is the model solution of all
compartments of model (1). Table 3 indicates initial values of param-
eters and the model (1) optimization. Using the estimated values, the
model solution can be compared with the simulated data as shown in
Fig. 25. From this figure, it is observed that the simulated and fitted
superimpose.

Conclusion and discussion

This paper introduced a mathematical model which consists of a
system of seven non-linear ordinary differential equations. The aim of
the model is to study the transmission of COVID-19 dynamics taking
Fig. 25. Curve fitting.
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into account both public control measures (as a parameter) and health-
care workers (as an independent compartment). It was important to
have these two parameters because we have illustrated mathematically
that healthcare workers are protected through effective use of personal
protective equipment and control measures are used to minimize the
spread of COVID-19 in the public.

Mathematical analyses including positivity of a solution, bounded-
ness, computation of equilibria, calculation of the basic reproduction
ratio, and stability analysis of the equilibria were carried out. Numeri-
cal simulations were performed by an effective MATLAB solver ODE45
Runge–Kutta fourth-order schemes [32] and the results indicated that
in the absence of both 𝜃 and 𝜉, 𝑅0 = 4.6047. However, when the two
parameters are introduced to the model, the value of 𝑅0 is reduced
o 0.4606. This signifies the importance of the two parameters con-
ruently when incorporated in the model for the sake of breaking the
ransmission of the disease.

Conclusively, the results indicated that protection of healthcare
orkers can be achieved through effective use of personal protective
quipment by healthcare workers and minimization of transmission
f COVID-19 in the general public by the implementation of control
easures. Although many healthcare workers have been using protec-

ive equipment, this work emphasizes its impacts mathematically and
trongly recommend others who have not been using them to do so.

The proposed model of this paper can be further improved by
onsidering a Fractional-order analog as well as a stochastic model in
rder to capture more transmission dynamics of COVID-19 [7,23].

unding

Not applicable.

RediT authorship contribution statement

Lemjini Masandawa: Data curation, Writing – original draft,
ethodology, Writing – review & editing, Conceptualization. Silas

Steven Mirau: Visualization, Investigation, Supervision, Validation,
Editing, Formal analysis, Project administration, Resource. Isambi
Sailon Mbalawata: Conceptualization, Software, Preparation, Super-
vision, Editing, Project administration.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Availability of data and material

All the data used in this manuscript can be found on different cited
literature.

Acknowledgments

The authors acknowledge with thanks the support from AIMS. Also,
authors would like to thank the reviewers and editors of this paper
for their careful attention to detail and constructive feedback that
improved the presentation of the paper greatly

References

[1] Ogana W, Juma VO, Bulimo WD. A SIRD model applied to COVID-19 dynamics
and intervention strategies during the first wave in Kenya, MedRxiv. 2021.

[2] Ivorra B, Ferrández MR, Vela-Pérez M, Ramos A. Mathematical modeling of
the spread of the coronavirus disease 2019 (COVID-19) taking into account the
undetected infections. The case of China. Commun Nonlinear Sci Numer Simul
13

2020;88:105303.
[3] Oud MAA, Ali A, Alrabaiah H, Ullah S, Khan MA, Islam S. A fractional order
mathematical model for COVID-19 dynamics with quarantine, isolation, and
environmental viral load. Adv Difference Equ 2021;2021(1):1–19.

[4] Mahmoudi MR, Heydari MH, Qasem SN, Mosavi A, Band SS. Principal component
analysis to study the relations between the spread rates of COVID-19 in high risks
countries. Alex Eng J 2021;60(1):457–64.

[5] Sardar T, Nadim SS, Rana S, Chattopadhyay J. Assessment of lockdown effect
in some states and overall India: A predictive mathematical study on COVID-19
outbreak. Chaos Solitons Fractals 2020;139:110078.

[6] Hui DS, Zumla A, Tang JW. Lethal zoonotic coronavirus infections of humans–
comparative phylogenetics, epidemiology, transmission, and clinical features of
coronavirus disease 2019, The Middle East respiratory syndrome and severe acute
respiratory syndrome. Curr Opin Pulm Med 2021;27(3):146–54.

[7] Naik PA, Yavuz M, Qureshi S, Zu J, Townley S. Modeling and analysis of
COVID-19 epidemics with treatment in fractional derivatives using real data from
Pakistan. Eur Phys J Plus 2020;135(10):1–42.

[8] Bozkurt F, Yousef A, Baleanu D, Alzabut J. A mathematical model of the
evolution and spread of pathogenic coronaviruses from natural host to human
host. Chaos Solitons Fractals 2020;138:109931.

[9] Peter OJ, Qureshi S, Yusuf A, Al-Shomrani M, Idowu AA. A new mathematical
model of COVID-19 using real data from Pakistan. Results Phys 2021;104098.

[10] Mbogo RW, Odhiambo JW. COVID-19 outbreak, social distancing and mass
testing in Kenya-insights from a mathematical model. Afrika Mat 2021;1–16.

[11] Gostic K, Gomez AC, Mummah RO, Kucharski AJ, Lloyd-Smith JO. Estimated
effectiveness of symptom and risk screening to prevent the spread of COVID-19.
Elife 2020;9:e55570.

[12] Linka K, Peirlinck M, Kuhl E. The reproduction number of COVID-19 and its
correlation with public health interventions. Comput Mech 2020;66(4):1035–50.

[13] Gill BS, Jayaraj VJ, Singh S, Mohd Ghazali S, Cheong YL, Md Iderus NH,
et al. Modelling the effectiveness of epidemic control measures in preventing
the transmission of COVID-19 in Malaysia. Int J Environ Res Public Health
2020;17(15):5509.

[14] Locatelli I, Trächsel B, Rousson V. Estimating the basic reproduction number for
COVID-19 in Western Europe. Plos One 2021;16(3):e0248731.

[15] Yu C-J, Wang Z-X, Xu Y, Hu M-X, Chen K, Qin G. Assessment of basic
reproductive number for COVID-19 at global level: A meta-analysis. Medicine
2021;100(18).

[16] Shahzad M, Abdel-Aty A-H, Attia RA, Khoshnaw SH, Aldila D, Ali M, et
al. Dynamics models for identifying the key transmission parameters of the
COVID-19 disease. Alex Eng J 2021;60(1):757–65.

[17] Olivares A, Staffetti E. Uncertainty quantification of a mathematical model of
COVID-19 transmission dynamics with mass vaccination strategy. Chaos Solitons
Fractals 2021;110895.

[18] Bocharov G, Volpert V, Ludewig B, Meyerhans A. In: Mathematical immunology
of virus infections, vol. 245, Springer; 2018.

[19] Neto OP, Kennedy DM, Reis JC, Wang Y, Brizzi ACB, Zambrano GJ, et al.
Mathematical model of COVID-19 intervention scenarios for São Paulo—Brazil.
Nature Commun 2021;12(1):1–13.

[20] Baba IA, Yusuf A, Nisar KS, Abdel-Aty A-H, Nofal TA. Mathematical model to
assess the imposition of lockdown during COVID-19 pandemic. Results Phys
2021;20:103716.

[21] Abdullah SA, Owyed S, Abdel-Aty A-H, Mahmoud EE, Shah K, Alrabaiah H.
Mathematical analysis of COVID-19 via new mathematical model. Chaos Solitons
Fractals 2021;143:110585.

[22] Ahmed I, Modu GU, Yusuf A, Kumam P, Yusuf I. A mathematical model
of coronavirus disease (COVID-19) containing asymptomatic and symptomatic
classes. Results Phys 2021;21:103776.

[23] Ali Z, Rabiei F, Shah K, Khodadadi T. Qualitative analysis of fractal-fractional
order COVID-19 mathematical model with case study of wuhan. Alex Eng J
2021;60(1):477–89.

[24] Moore S, Hill EM, Tildesley MJ, Dyson L, Keeling MJ. Vaccination and non-
pharmaceutical interventions for COVID-19: a mathematical modelling study.
Lancet Infect Dis 2021.

[25] Contreras S, Priesemann V. Risking further COVID-19 waves despite vaccination.
Lancet Infect Dis 2021.

[26] Buhat CAH, Torres MC, Olave YH, Gavina MKA, Felix EFO, Gamilla GB, et al.
A mathematical model of COVID-19 transmission between frontliners and the
general public. Netw Model Anal Health Inform Bioinform 2021;10(1):1–12.

[27] Adak D, Majumder A, Bairagi N. Mathematical perspective of Covid-19 pandemic:
Disease extinction criteria in deterministic and stochastic models. Chaos Solitons
Fractals 2021;142:110381.

[28] Dy LF, Rabajante JF. A COVID-19 infection risk model for frontline health care
workers. Netw Model Anal Health Inform Bioinform 2020;9(1):1–13.

[29] Chatterjee K, Chatterjee K, Kumar A, Shankar S. Healthcare impact of COVID-19
epidemic in India: A stochastic mathematical model. Med J Armed Forces India
2020;76(2):147–55.

[30] Sánchez-Taltavull D, Castelo-Szekely V, Candinas D, Roldán E, Beldi G. Modelling
strategies to organize healthcare workforce during pandemics: application to
COVID-19. J Theoret Biol 2021;523:110718.

http://refhub.elsevier.com/S2211-3797(21)00803-2/sb1
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb1
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb1
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb2
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb2
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb2
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb2
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb2
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb2
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb2
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb3
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb3
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb3
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb3
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb3
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb4
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb4
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb4
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb4
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb4
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb5
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb5
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb5
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb5
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb5
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb6
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb6
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb6
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb6
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb6
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb6
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb6
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb7
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb7
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb7
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb7
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb7
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb8
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb8
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb8
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb8
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb8
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb9
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb9
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb9
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb10
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb10
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb10
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb11
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb11
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb11
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb11
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb11
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb12
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb12
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb12
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb13
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb13
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb13
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb13
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb13
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb13
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb13
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb14
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb14
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb14
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb15
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb15
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb15
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb15
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb15
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb16
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb16
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb16
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb16
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb16
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb17
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb17
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb17
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb17
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb17
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb18
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb18
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb18
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb19
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb19
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb19
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb19
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb19
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb20
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb20
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb20
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb20
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb20
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb21
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb21
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb21
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb21
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb21
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb22
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb22
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb22
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb22
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb22
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb23
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb23
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb23
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb23
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb23
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb24
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb24
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb24
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb24
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb24
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb25
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb25
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb25
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb26
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb26
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb26
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb26
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb26
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb27
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb27
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb27
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb27
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb27
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb28
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb28
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb28
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb29
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb29
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb29
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb29
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb29
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb30
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb30
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb30
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb30
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb30


Results in Physics 29 (2021) 104731L. Masandawa et al.
[31] Mugisha JY, Ssebuliba J, Nakakawa JN, Kikawa CR, Ssematimba A. Mathemat-
ical modeling of COVID-19 transmission dynamics in Uganda: Implications of
complacency and early easing of lockdown. PLoS One 2021;16(2):e0247456.

[32] Yavuz M, Coşar FO, Günay F, Özdemir FN. A new mathematical modeling of the
COVID-19 pandemic including the vaccination campaign. Open J Model Simul
2021;9(3):299–321.

[33] Zhang Z, Gul R, Zeb A. Global sensitivity analysis of COVID-19 mathematical
model. Alex Eng J 2021;60(1):565–72.

[34] Van den Driessche P, Watmough J. Reproduction numbers and sub-threshold
endemic equilibria for compartmental models of disease transmission. Math
Biosci 2002;180(1–2):29–48.

[35] Patil A. Routh-hurwitz criterion for stability: An overview and its implementation
on characteristic equation vectors using MATLAB. Emerg Technol Data Min Inf
Secur 2021;319–29.

[36] Castillo-Chavez C, Feng Z, Huang W, et al. On the computation of R˜ 0 and its
role in global stability. IMA Vol Math Appl 2002;125:229–50.

[37] Korobeinikov A, Wake GC. Lyapunov Functions and global stability for SIR, SIRS,
and SIS epidemiological models. Appl Math Lett 2002;15(8):955–60.

[38] Korobeinikov A. Global properties of infectious disease models with nonlinear
incidence. Bull Math Biol 2007;69(6):1871–86.
14
[39] McCluskey CC. Lyapunov functions for tuberculosis models with fast and slow
progression. Math Biosci Eng 2006;3(4):603.

[40] LaSalle JP. Stability theory and invariance principles. In: Dynamical systems.
Elsevier; 1976, p. 211–22.

[41] Babaei A, Jafari H, Ahmadi M. A fractional order HIV/AIDS model based
on the effect of screening of unaware infectives. Math Methods Appl Sci
2019;42(7):2334–43.

[42] Carvalho D, Barbastefano R, Pastore D, Lippi MC. A novel predictive mathemat-
ical model for COVID-19 pandemic with quarantine, contagion dynamics, and
environmentally mediated transmission, medrxiv. 2020.

[43] Mbabazi FK, Gavamukulya Y, Awichi R, Olupot-Olupot P, Rwahwire S, Biira S,
et al. A mathematical model approach for prevention and intervention measures
of the COVID–19 pandemic in Uganda. 2020.

[44] Aldila D. Analyzing the impact of the media campaign and rapid testing for
COVID-19 as an optimal control problem in East Java, Indonesia. Chaos Solitons
Fractals 2020;141:110364.

[45] Deressa CT, Duressa GF. Modeling and optimal control analysis of transmission
dynamics of COVID-19: The case of ethiopia. Alex Eng J 2021;60(1):719–32.

http://refhub.elsevier.com/S2211-3797(21)00803-2/sb31
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb31
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb31
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb31
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb31
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb32
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb32
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb32
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb32
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb32
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb33
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb33
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb33
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb34
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb34
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb34
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb34
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb34
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb35
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb35
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb35
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb35
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb35
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb36
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb36
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb36
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb37
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb37
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb37
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb38
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb38
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb38
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb39
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb39
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb39
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb40
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb40
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb40
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb41
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb41
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb41
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb41
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb41
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb42
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb42
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb42
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb42
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb42
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb43
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb43
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb43
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb43
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb43
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb44
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb44
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb44
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb44
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb44
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb45
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb45
http://refhub.elsevier.com/S2211-3797(21)00803-2/sb45

